Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection.
نویسندگان
چکیده
The pathogen group A Streptococcus (GAS) produces a wide spectrum of infections including necrotizing fasciitis (NF). Streptolysin S (SLS) produces the hallmark beta-haemolytic phenotype produced by GAS. The nine-gene GAS locus (sagA-sagI) resembling a bacteriocin biosynthetic operon is necessary and sufficient for SLS production. Using precise, in-frame allelic exchange mutagenesis and single-gene complementation, we show sagA, sagB, sagC, sagD, sagE, sagF and sagG are each individually required for SLS production, and that sagE may further serve an immunity function. Limited site-directed mutagenesis of specific amino acids in the SagA prepropeptide supports the designation of SLS as a bacteriocin-like toxin. No significant pleotrophic effects of sagA deletion were observed on M protein, capsule or cysteine protease production. In a murine model of NF, the SLS-negative M1T1 GAS mutant was markedly diminished in its ability to produce necrotic skin ulcers and spread to the systemic circulation. The SLS toxin impaired phagocytic clearance and promoted epithelial cell cytotoxicity, the latter phenotype being enhanced by the effects of M protein and streptolysin O. We conclude that all genetic components of the sag operon are required for expression of functional SLS, an important virulence factor in the pathogenesis of invasive M1T1 GAS infection.
منابع مشابه
Genetic characterization and virulence role of the RALP3/LSA locus upstream of the streptolysin s operon in invasive M1T1 Group A Streptococcus.
Group A Streptococcus (GAS) is a leading human pathogen associated with a wide spectrum of mucosal and invasive infections. GAS expresses a large number of virulence determinants whose expression is under the control of several transcriptional regulatory networks. Here we performed the first mutational analysis of a genetic locus immediately upstream of the streptolysin S biosynthetic operon in...
متن کاملRole of NADase in virulence in experimental invasive group A streptococcal infection.
Group A streptococci (GAS) produce several exoproteins that are thought to contribute to the pathogenesis of human infection. Two such proteins, streptolysin O (SLO) and NAD(+)-glycohydrolase (NADase), have been shown to interact functionally as a compound signaling toxin. When GAS are bound to the surface of epithelial cells in vitro, SLO forms pores in the cell membrane and delivers NADase to...
متن کاملCcpA-mediated repression of streptolysin S expression and virulence in the group A streptococcus.
CcpA is the global mediator of carbon catabolite repression (CCR) in gram-positive bacteria, and growing evidence from several pathogens, including the group A streptococcus (GAS), suggests that CcpA plays an important role in virulence gene regulation. In this study, a deletion of ccpA in an invasive M1 GAS strain was used to test the contribution of CcpA to pathogenesis in mice. Surprisingly,...
متن کاملRole of streptolysin O in a mouse model of invasive group A streptococcal disease.
Many of the virulence factors that have been characterized for group A streptococci (GAS) are not expressed in all clinical isolates. One putative virulence factor that is present among most is streptolysin O (Slo), a protein with well-characterized cytolytic activity for many eukaryotic cells types. In other bacterial pathogens, proteins homologous to Slo have been shown to be essential for vi...
متن کاملIncreased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections
Streptococcus dysgalactiae subsp. equisimilis (SDSE) has emerged as an important cause of severe skin and soft tissue infections, but little is known of the pathogenic mechanisms underlying tissue pathology. Patient samples and a collection of invasive and non-invasive group G SDSE strains (n = 69) were analyzed with respect to virulence factor expression and cytotoxic or inflammatory effects o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular microbiology
دوره 56 3 شماره
صفحات -
تاریخ انتشار 2005